Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Plant ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38594902

RESUMO

Beyond their function as structural barriers, plant cell walls are essential elements for the adaptation of plants to environmental conditions. Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues. These wall changes are perceived by plant sensors/receptors triggering adaptative responses during development and upon stress perception. Plant cell wall damage caused by pathogen infection, wounding or other stresses leads to the release of wall molecules, like carbohydrates (glycans), that function as Damage-Associated Molecular Patterns (DAMPs). DAMPs are perceived by the Extracellular Ectodomains (ECDs) of Pattern Recognition Receptors (PRRs) activating Pattern-Triggered Immunity (PTI) and disease resistance. Similarly, glycans released from walls and extracellular layers of microorganisms interacting with plants are recognised as Microbe-Associated Molecular Patterns (MAMPs) by specific ECD-PRRs triggering PTI responses. The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years. However, the structural mechanisms underlying glycans recognition by plant PRRs remain limited. Currently, this knowledge is mainly focused on receptors of the LysM-PRRs family, which are involved in the perception of various molecules, such as chitooligosaccharides from fungi and lipo-chitooligosaccharides (i.e. Nod/MYC factors from bacteria and mycorrhiza, respectively) that trigger differential physiological responses. Nevertheless, additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition. These include Receptor Kinases (RKs) with Leucine-Rich Repeat and Malectin domains in their ECDs (LRR-MAL RKs), Catharanthus roseus RECEPTOR-LIKE KINASE 1 LIKE group (CrRLK1L) with Malectin-like (MLL) domains in their ECDs, as well as Wall-Associated Kinases (WAKs), lectin-RKs and LRR-extensins. The characterization of the structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception. This gained knowledge holds the potential to facilitate the development of sustainable, glycan-based crop protection solutions.

2.
Angew Chem Int Ed Engl ; 63(17): e202401541, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38393988

RESUMO

Veillonella parvula, prototypical member of the oral and gut microbiota, is at times commensal yet also potentially pathogenic. The definition of the molecular basis tailoring this contrasting behavior is key for broadening our understanding of the microbiota-driven pathogenic and/or tolerogenic mechanisms that take place within our body. In this study, we focused on the chemistry of the main constituent of the outer membrane of V. parvula, the lipopolysaccharide (LPS). LPS molecules indeed elicit pro-inflammatory and immunomodulatory responses depending on their chemical structures. Herein we report the structural elucidation of the LPS from two strains of V. parvula and show important and unprecedented differences in both the lipid and carbohydrate moieties, including the identification of a novel galactofuranose and mannitol-containing O-antigen repeating unit for one of the two strains. Furthermore, by harnessing computational studies, in vitro human cell models, as well as lectin binding solid-phase assays, we discovered that the two chemically diverse LPS immunologically behave differently and have attempted to identify the molecular determinant(s) governing this phenomenon. Whereas pro-inflammatory potential has been evidenced for the lipid A moiety, by contrast a plausible "immune modulating" action has been proposed for the peculiar O-antigen portion.


Assuntos
Lipopolissacarídeos , Antígenos O , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Antígenos O/metabolismo , Veillonella/metabolismo , Lipídeo A
3.
Angew Chem Int Ed Engl ; 63(8): e202314773, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38055325

RESUMO

Molecular Dynamics (MD) simulations constitute a powerful tool that provides a 3D perspective of the dynamical behavior of chemical systems. Herein the first MD study of the dynamics of a catalytic organometallic system, in micellar media, is presented. The challenging methane catalytic functionalization into ethyl propionate through a silver-catalyzed process has been targeted as the case study. The intimate nature of the micelles formed with the surfactants sodium dodecylsulfate (SDS) and potassium perfluorooctane sulfonate (PFOS) has been ascertained, as well as the relative distribution of the main actors in this transformation, namely methane, the diazo reagent and the silver catalyst, the latter in two different forms: the initial compound and a silver-carbene intermediate. Catalyst deactivation occurs with halide containing surfactants dodecyltrimethylammonium chloride (DTAC) and Triton X-100. Computed simulations allow explaining the experimental results, indicating that micelles behave differently regarding the degree of accumulation and the local distribution of the reactants and their effect in the molecular collisions leading to net reaction.

4.
Methods Mol Biol ; 2700: 3-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603172

RESUMO

Toll-like receptors (TLRs), classified as pattern recognition receptors, have a primordial role in the activation of the innate immunity. In particular, TLR4 binds to lipopolysaccharides (LPS), a membrane constituent of Gram-negative bacteria, and, together with Myeloid Differentiation factor 2 (MD-2) protein, forms a heterodimeric complex which leads to the activation of the innate immune system response. Identification of TLRs has sparked great interest in the therapeutic manipulation of the innate immune system. In particular, TLR4 antagonists may be useful for the treatment of septic shock, certain autoimmune diseases, noninfectious inflammatory disorders, and neuropathic pain, and TLR4 agonists are under development as vaccine adjuvants in antitumoral treatments. Therefore, TLR4 has risen as a promising therapeutic target, and its modulation constitutes a highly relevant and active research area. Deep structural understanding of TLR4 signaling may help in the design and discovery of TLR4-modulating molecules with desirable therapeutic properties.Computational studies of the different independent domains composing the TLR4 were undertaken, to understand the differential domain organization of TLR4 in aqueous and membrane environments, including Liquid-disordered (Ld) and Liquid-ordered (Lo) membrane models, to account for the TLR4 recruitment in lipid rafts over activation. We modeled, by means of all-atom Molecular Dynamics (MD) simulations, the structural assembly of plausible full-length TLR4 models embedded into a realistic plasma membrane, accounting for the active (agonist) state of the TLR4, thus providing an analysis at both atomic/molecular and thermodynamic levels of the TLR4 assembly and biological activity. Our results unveil relevant molecular aspects involved in the mechanism of receptor activation, and adaptor recruitment in the innate immune pathways, and will promote the discovery of new TLR4 modulators and probes.


Assuntos
Doenças Autoimunes , Receptor 4 Toll-Like , Humanos , Receptores Toll-Like , Domínios Proteicos , Adjuvantes de Vacinas
5.
Carbohydr Polym ; 318: 121094, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479429

RESUMO

Lipopolysaccharides (LPS) are major players in bacterial infection through the recognition by Toll-like receptor 4 (TLR4). The LPS chemical structure, including the oligosaccharide core and the lipid A moiety, can be strongly influenced by adaptation and modulated to assure bacteria protection, evade immune surveillance, or reduce host immune responses. Deep structural understanding of TLRs signaling is essential for the modulation of the innate immune system in sepsis control and inflammation, during bacterial infection. To advance this knowledge, we have employed computational techniques to characterize the TLR4 molecular recognition of atypical LPSs from different opportunistic members of α2-Proteobacteria, including Brucella melitensis, Ochrobactrum anthropi, and Ochrobactrum intermedium, with diverse immunostimulatory activities. We contribute to unraveling the role of uncommon lipid A chemical features such as bearing very long-chain fatty acid chains, whose presence has been rarely reported, on modulating the proper heterodimerization of the TLR4 receptor complex. Moreover, we further evaluated the influence of the different oligosaccharide cores, including sugar composition and net charge, on TLR4 activation. Our studies contribute to elucidating, from the molecular and biological perspectives, the impact of the α2-Proteobacteria LPS cores and the chemical structure of the atypical lipid A for immune system evasion in opportunistic bacteria.


Assuntos
Infecções Bacterianas , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/química , Receptor 4 Toll-Like , Lipídeo A/química , Proteobactérias , Evasão da Resposta Imune , Bactérias , Oligossacarídeos
6.
J Med Chem ; 66(4): 3010-3029, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36728697

RESUMO

We disclose here a panel of small-molecule TLR4 agonists (the FP20 series) whose structure is derived from previously developed TLR4 ligands (FP18 series). The new molecules have increased chemical stability and a shorter, more efficient, and scalable synthesis. The FP20 series showed selective activity as TLR4 agonists with a potency similar to FP18. Interestingly, despite the chemical similarity with the FP18 series, FP20 showed a different mechanism of action and immunofluorescence microscopy showed no NF-κB nor p-IRF-3 nuclear translocation but rather MAPK and NLRP3-dependent inflammasome activation. The computational studies related a 3D shape of FP20 series with agonist binding properties inside the MD-2 pocket. FP20 displayed a CMC value lower than 5 µM in water, and small unilamellar vesicle (SUV) formation was observed in the biological activity concentration range. FP20 showed no toxicity in mouse vaccination experiments with OVA antigen and induced IgG production, thus indicating a promising adjuvant activity.


Assuntos
Adjuvantes de Vacinas , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Adjuvantes Imunológicos/farmacologia , NF-kappa B/metabolismo , Vacinação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo
7.
Sci Rep ; 12(1): 19474, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376343

RESUMO

AntiMicrobial Resistance (AMR) is a worldwide health emergency. ESKAPE pathogens include the most relevant AMR bacterial families. In particular, Gram-negative bacteria stand out due to their cell envelope complexity which exhibits strong resistance to antimicrobials. A key element for AMR is the chemical structure of lipid A, modulating the physico-chemical properties of the membrane and permeability to antibiotics. Liposomes are used as models of bacterial membrane infective vesicles. In this work, coarse-grained molecular dynamics simulations were used to model liposomes from ESKAPE Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa). We captured the role of lipid A, cardiolipin and cholesterol on liposome morphology and physico-chemical properties. Additionally, the reported antimicrobial peptides Cecropin B1, JB95, and PTCDA1-kf, were used to unveil their implications on membrane disruption. This study opens a promising starting point to understand molecular keys of bacterial membranes and to promote the discovery of new antimicrobials to overcome AMR.


Assuntos
Acinetobacter baumannii , Lipossomos , Humanos , Lipídeo A , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Escherichia coli , Colesterol , Testes de Sensibilidade Microbiana
8.
Biomedicines ; 10(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36140427

RESUMO

The innate immunity toll-like receptor 4 (TLR4) system is a receptor of paramount importance as a therapeutic target. Virtual screening following a "computer-aided drug repurposing" approach was applied to the discovery of novel TLR4 modulators with a non-lipopolysaccharide-like structure. We screened almost 29,000 approved drugs and drug-like molecules from commercial, public, and in-house academia chemical libraries and, after biological assays, identified several compounds with TLR4 antagonist activity. Our computational protocol showed to be a robust approach for the identification of hits with drug-like scaffolds as possible inhibitors of the TLR4 innate immune pathways. Our collaborative work broadens the chemical diversity for inspiration of new classes of TLR4 modulators.

9.
Br J Pharmacol ; 179(22): 5089-5108, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35760458

RESUMO

BACKGROUND AND PURPOSE: The pathogenesis of osteoarthritis implicates a low-grade inflammation associated to the innate immune system activation. Toll like receptor (TLR) stimulation triggers the release of inflammatory mediators, which aggravate osteoarthritis. We studied the preventive effect of 6-shogaol, a potential TLR4 inhibitor, on the treatment of experimental knee osteoarthritis. EXPERIMENTAL APPROACH: Osteoarthritis was induced in C57BL6 mice by surgical section of the medial meniscotibial ligament, which received 6-shogaol for eight weeks. Cartilage damage, inflammatory mediator presence and disease markers were assessed in joint tissues by immunohistochemistry. Computational modelling was used to predict binding modes of 6-shogaol into the TLR4/MD2 receptor and its permeability across cellular membranes. Employing LPS-stimulated chondrocytes and MAPK assay, we elucidated 6-shogaol action mechanisms. KEY RESULTS: 6-Shogaol treatment prevented articular cartilage lesions, synovitis and the presence of pro-inflammatory mediators, and disease markers in osteoarthritis animals. Molecular modelling studies predicted 6-shogaol interaction with the TLR4/MD-2 heterodimer in an antagonist conformation through its binding into the MD-2 pocket. In cell culture, we confirmed that 6-shogaol reduced LPS-induced TLR4 inflammatory signalling pathways. Besides, MAPK assay demonstrated that 6-shogaol directly inhibits the ERK1/2 phosphorylation activity. CONCLUSION AND IMPLICATIONS: 6-Shogaol evoked a preventive action on cartilage and synovial inflammation in osteoarthritis mice. 6-shogaol effect may take place not only by hindering the interaction between TLR4 ligands and the TLR4/MD-2 complex in chondrocytes, but also through inhibition of ERK phosphorylation, implying a pleiotropic effect on different mediators activated during osteoarthritis, which proposes it as an attractive drug for osteoarthritis treatments.


Assuntos
Condrócitos , Osteoartrite do Joelho , Animais , Catecóis , Condrócitos/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
10.
Chemistry ; 27(62): 15406-15425, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34569111

RESUMO

The Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) innate immunity system is a membrane receptor of paramount importance as therapeutic target. Its assembly, upon binding of Gram-negative bacteria lipopolysaccharide (LPS), and also dependent on the membrane composition, finally triggers the immune response cascade. We have combined ab-initio calculations, molecular docking, all-atom molecular dynamics simulations, and thermodynamics calculations to provide the most realistic and complete 3D models of the active full TLR4 complex embedded into a realistic membrane to date. Our studies give functional and structural insights into the transmembrane domain behavior in different membrane environments, the ectodomain bouncing movement, and the dimerization patterns of the intracellular Toll/Interleukin-1 receptor domain. Our work provides TLR4 models as reasonable 3D structures for the (TLR4/MD-2/LPS)2 architecture accounting for the active (agonist) state of the TLR4, and pointing to a signal transduction mechanism across cell membrane. These observations unveil relevant molecular aspects involved in the TLR4 innate immune pathways and will promote the discovery of new TLR4 modulators.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Antígeno 96 de Linfócito/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
11.
J Med Chem ; 64(16): 12261-12272, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34382796

RESUMO

Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA.


Assuntos
Adjuvantes Imunológicos/farmacologia , Glucosamina/farmacologia , Glicolipídeos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/toxicidade , Animais , Feminino , Glucosamina/síntese química , Glucosamina/metabolismo , Glucosamina/toxicidade , Glicolipídeos/síntese química , Glicolipídeos/metabolismo , Glicolipídeos/toxicidade , Humanos , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
12.
Antioxidants (Basel) ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203497

RESUMO

The intermediate filament protein vimentin is involved in essential cellular processes, including cell division and stress responses, as well as in the pathophysiology of cancer, pathogen infection, and autoimmunity. The vimentin network undergoes marked reorganizations in response to oxidative stress, in which modifications of vimentin single cysteine residue, Cys328, play an important role, and is modulated by zinc availability. However, the molecular basis for this regulation is not fully understood. Here, we show that Cys328 displays a low pKa, supporting its reactivity, and is readily alkylated and oxidized in vitro. Moreover, combined oxidation and crosslinking assays and molecular dynamics simulations support that zinc ions interact with Cys328 in its thiolate form, whereas Glu329 and Asp331 stabilize zinc coordination. Vimentin oxidation can induce disulfide crosslinking, implying the close proximity of Cys328 from neighboring dimers in certain vimentin conformations, supported by our computational models. Notably, micromolar zinc concentrations prevent Cys328 alkylation, lipoxidation, and disulfide formation. Moreover, zinc selectively protects vimentin from crosslinking using short-spacer cysteine-reactive but not amine-reactive agents. These effects are not mimicked by magnesium, consistent with a lower number of magnesium ions hosted at the cysteine region, according to molecular dynamics simulations. Importantly, the region surrounding Cys328 is involved in interaction with several drugs targeting vimentin and is conserved in type III intermediate filaments, which include glial fibrillary acidic protein and desmin. Altogether, our results identify this region as a hot spot for zinc binding, which modulates Cys328 reactivity. Moreover, they provide a molecular standpoint for vimentin regulation through the interplay between cysteine modifications and zinc availability.

13.
Front Pharmacol ; 12: 613449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867979

RESUMO

The cardiovascular toxicity of Abacavir is related to its purinergic structure. Purinergic P2X7-receptors (P2X7R), characterized by activation by high concentrations of ATP and with high plasticity, seem implicated. We appraise the nature of the interplay between Abacavir and P2X7R in generating vascular inflammation. The effects of Abacavir on leukocyte-endothelium interactions were compared with those of its metabolite carbovir triphosphate (CBV-TP) or ATP in the presence of apyrase (ATP-ase) or A804598 (P2X7R-antagonist). CBV-TP and ATP levels were evaluated by HPLC, while binding of Abacavir, CBV-TP and ATP to P2X7R was assessed by radioligand and docking studies. Hypersensitivity studies explored a potential allosteric action of Abacavir. Clinical concentrations of Abacavir (20 µmol/L) induced leukocyte-endothelial cell interactions by specifically activating P2X7R, but the drug did not show affinity for the P2X7R ATP-binding site (site 1). CBV-TP levels were undetectable in Abacavir-treated cells, while those of ATP were unaltered. The effects of Abacavir were Apyrase-dependent, implying dependence on endogenous ATP. Exogenous ATP induced a profile of proinflammatory actions similar to Abacavir, but was not entirely P2X7R-dependent. Docking calculations suggested ATP-binding to sites 1 and 2, and Abacavir-binding only to allosteric site 2. A combination of concentrations of Abacavir (1 µmol/L) and ATP (0.1 µmol/L) that had no effect when administered separately induced leukocyte-endothelium interactions mediated by P2X7R and involving Connexin43 channels. Therefore, Abacavir acts as a positive allosteric modulator of P2X7R, turning low concentrations of endogenous ATP themselves incapable of stimulating P2X7R into a functional proinflammatory agonist of the receptor.

14.
ACS Omega ; 6(9): 6041-6054, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33718695

RESUMO

Antimicrobial resistance (AMR) represents a major threat to global public health in the 21st century, dramatically increasing the pandemic expectations in the coming years. The ongoing need to develop new antimicrobial treatments that are effective against multi-drug-resistant pathogens has led the research community to investigate innovative strategies to tackle AMR. The bacterial cell envelope has been identified as one of the key molecular players responsible for antibiotic resistance, attracting considerable interest as a potential target for novel antimicrobials effective against AMR, to be used alone or in combination with other drugs. However, the multicomponent complexity of bacterial membranes provides a heterogeneous morphology, which is typically difficult to study at the molecular level by experimental techniques, in spite of the significant development of fast and efficient experimental protocols. In recent years, computational modeling, in particular, molecular dynamics simulations, has proven to be an effective tool to reveal key aspects in the architecture and membrane organization of bacterial cell walls. Here, after a general overview about bacterial membranes, AMR mechanisms, and experimental approaches to study AMR, we review the state-of-the-art computational approaches to investigate bacterial AMR envelopes, including their limitations and challenges ahead. Representative examples illustrate how these techniques improve our understanding of bacterial membrane resistance mechanisms, hopefully leading to the development of novel antimicrobial drugs escaping from bacterial resistance strategies.

15.
Blood ; 137(25): 3484-3494, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33651882

RESUMO

Factor H (FH)-related proteins are a group of partly characterized complement proteins thought to promote complement activation by competing with FH in binding to surface-bound C3b. Among them, FH-related protein 1 (FHR-1) is remarkable because of its association with atypical hemolytic uremic syndrome (aHUS) and other important diseases. Using a combination of biochemical, immunological, nuclear magnetic resonance, and computational approaches, we characterized a series of FHR-1 mutants (including 2 associated with aHUS) and unraveled the molecular bases of the so-called deregulation activity of FHR-1. In contrast with FH, FHR-1 lacks the capacity to bind sialic acids, which prevents C3b-binding competition between FH and FHR-1 in host-cell surfaces. aHUS-associated FHR-1 mutants are pathogenic because they have acquired the capacity to bind sialic acids, which increases FHR-1 avidity for surface-bound C3-activated fragments and results in C3b-binding competition with FH. FHR-1 binds to native C3, in addition to C3b, iC3b, and C3dg. This unexpected finding suggests that the mechanism by which surface-bound FHR-1 promotes complement activation is the attraction of native C3 to the cell surface. Although C3b-binding competition with FH is limited to aHUS-associated mutants, all surface-bound FHR-1 promotes complement activation, which is delimited by the FHR-1/FH activity ratio. Our data indicate that FHR-1 deregulation activity is important to sustain complement activation and C3 deposition at complement-activating surfaces. They also support that abnormally elevated FHR-1/FH activity ratios would perpetuate pathological complement dysregulation at complement-activating surfaces, which may explain the association of FHR-1 quantitative variations with diseases.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Proteínas Sanguíneas/química , Complemento C3/química , Mutação , Animais , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica
16.
Front Immunol ; 12: 748303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140704

RESUMO

The Toll-like receptor 4 (TLR4)/myeloid differentiation protein-2 (MD-2) complex is considered the major receptor of the innate immune system to recognize lipopolysaccharides (LPSs). However, some atypical LPSs with different lipid A and core saccharide moiety structures and compositions than the well-studied enterobacterial LPSs can induce a TLR2-dependent response in innate immune cells. Ochrobactrum intermedium, an opportunistic pathogen, presents an atypical LPS. In this study, we found that O. intermedium LPS exhibits a weak inflammatory activity compared to Escherichia coli LPS and, more importantly, is a specific TLR4/TLR2 agonist, able to signal through both receptors. Molecular docking analysis of O. intermedium LPS predicts a favorable formation of a TLR2/TLR4/MD-2 heterodimer complex, which was experimentally confirmed by fluorescence resonance energy transfer (FRET) in cells. Interestingly, the core saccharide plays an important role in this interaction. This study reveals for the first time TLR4/TLR2 heterodimerization that is induced by atypical LPS and may help to escape from recognition by the innate immune system.


Assuntos
Endotoxinas/farmacologia , Lipopolissacarídeos/farmacologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/metabolismo , Lipídeo A/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular
17.
Front Mol Biosci ; 7: 201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903459

RESUMO

The increase of infections caused by multidrug-resistant bacteria, together with the loss of effectiveness of currently available antibiotics, represents one of the most serious threats to public health worldwide. The loss of human lives and the economic costs associated to the problem of the dissemination of antibiotic resistance require immediate action. Bacteria, known by their great genetic plasticity, are capable not only of mutating their genes to adapt to disturbances and environmental changes but also of acquiring new genes that allow them to survive in hostile environments, such as in the presence of antibiotics. One of the major mechanisms responsible for the horizontal acquisition of new genes (e.g., antibiotic resistance genes) is bacterial conjugation, a process mediated by mobile genetic elements such as conjugative plasmids and integrative conjugative elements. Conjugative plasmids harboring antibiotic resistance genes can be transferred from a donor to a recipient bacterium in a process that requires physical contact. After conjugation, the recipient bacterium not only harbors the antibiotic resistance genes but it can also transfer the acquired plasmid to other bacteria, thus contributing to the spread of antibiotic resistance. Conjugative plasmids have genes that encode all the proteins necessary for the conjugation to take place, such as the type IV coupling proteins (T4CPs) present in all conjugative plasmids. Type VI coupling proteins constitute a heterogeneous family of hexameric ATPases that use energy from the ATP hydrolysis for plasmid transfer. Taking into account their essential role in bacterial conjugation, T4CPs are attractive targets for the inhibition of bacterial conjugation and, concomitantly, the limitation of antibiotic resistance dissemination. This review aims to compile present knowledge on T4CPs as a starting point for delving into their molecular structure and functioning in future studies. Likewise, the scientific literature on bacterial conjugation inhibitors has been reviewed here, in an attempt to elucidate the possibility of designing T4CP-inhibitors as a potential solution to the dissemination of multidrug-resistant bacteria.

19.
iScience ; 23(6): 101231, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32629603

RESUMO

Siglec-10 is an inhibitory I-type lectin selectively recognizing sialoglycans exposed on cell surfaces, involved in several patho-physiological processes. The key role Siglec-10 plays in the regulation of immune cell functions has made it a potential target for the development of immunotherapeutics against a broad range of diseases. However, the crystal structure of the protein has not been resolved for the time being and the atomic description of Siglec-10 interactions with complex glycans has not been previously unraveled. We present here the first insights of the molecular mechanisms regulating the interaction between Siglec-10 and naturally occurring sialoglycans. We used combined spectroscopic, computational and biophysical approaches to dissect glycans' epitope mapping and conformation upon binding in order to afford a description of the 3D complexes. Our outcomes provide a structural perspective for the rational design and development of high-affinity ligands to control the receptor functionality.

20.
Biomolecules ; 10(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326143

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disease characterized by articular cartilage degradation and joint degeneration. The articular cartilage is mainly formed by chondrocytes and a collagen-proteoglycan extracellular matrix that contains high levels of glycosylated proteins. It was reported that the shift from glycoproteins containing α-2,6-linked sialic acids to those that contain α-2,3 was associated with the onset of common types of arthritis. However, the pathophysiology of α-2,3-sialylation in cartilage has not been yet elucidated. We show that cartilage from osteoarthritic patients expresses high levels of the α-2,3-sialylated transmembrane mucin receptor, known as podoplanin (PDPN). Additionally, the Maackia amurensis seed lectin (MASL), that can be utilized to target PDPN, attenuates the inflammatory response mediated by NF-kB activation in primary chondrocytes and protects human cartilage breakdown ex vivo and in an animal model of arthritis. These findings reveal that specific lectins targeting α-2,3-sialylated receptors on chondrocytes might effectively inhibit cartilage breakdown. We also present a computational 3D molecular model for this interaction. These findings provide mechanistic information on how a specific lectin could be used as a novel therapy to treat degenerative joint diseases such as osteoarthritis.


Assuntos
Osteoartrite/terapia , Receptores de Superfície Celular/metabolismo , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Lectinas/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo , NF-kappa B/metabolismo , Osteoartrite/patologia , Ligação Proteica , Isoformas de Proteínas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...